EMCAR: Expert Multi Class Based on Association Rule
نویسنده
چکیده
Several experimental studies revealed that expert systems have been successfully applied in real world domains such as medical diagnoses, traffic control, and many others. However, one of the major drawbacks of classic expert systems is their reliance on human domain experts which require time, care, experience and accuracy. This shortcoming also may result in building knowledge bases that may contain inconsistent rules or contradicting rules. To treat the abovementioned we intend to propose and develop automated methods based on data mining called Associative Classification (AC) that can be easily integrated into an expert system to produce the knowledge base according to hidden correlations in the input database. The methodology employed in the proposed expert system is based on learning the rules from the database rather than inputting the rules by the knowledge engineer from the domain expert and therefore, care and accuracy as well as processing time are improved. The proposed automated expert system contains a novel learning method based on AC mining that has been evaluated on Islamic textual data according to several evaluation measures including recall, precision and classification accuracy. Furthermore, five different classification approaches: Decision trees (C4.5, KNN, SVM, MCAR and NB) and the proposed automated expert system have been tested on the Islamic data set to determine the suitable method in classifying Arabic texts.
منابع مشابه
A Novel Method for Selecting the Supplier Based on Association Rule Mining
One of important problems in supply chains management is supplier selection. In a company, there are massive data from various departments so that extracting knowledge from the company’s data is too complicated. Many researchers have solved this problem by some methods like fuzzy set theory, goal programming, multi objective programming, the liner programming, mixed integer programming, analyti...
متن کاملMMDT: Multi-Objective Memetic Rule Learning from Decision Tree
In this article, a Multi-Objective Memetic Algorithm (MA) for rule learning is proposed. Prediction accuracy and interpretation are two measures that conflict with each other. In this approach, we consider accuracy and interpretation of rules sets. Additionally, individual classifiers face other problems such as huge sizes, high dimensionality and imbalance classes’ distribution data sets. This...
متن کاملExploiting Associations between Class Labels in Multi-label Classification
Multi-label classification has many applications in the text categorization, biology and medical diagnosis, in which multiple class labels can be assigned to each training instance simultaneously. As it is often the case that there are relationships between the labels, extracting the existing relationships between the labels and taking advantage of them during the training or prediction phases ...
متن کاملCAR-Miner: An efficient algorithm for mining class-association rules
Building a high accuracy classifier for classification is a problem in real applications. One high accuracy classifier used for this purpose is based on association rules. In the past, some researches showed that classification based on association rules (or class-association rules – CARs) has higher accuracy than that of other rule-based methods, such as ILA and C4.5. However, mining CARs cons...
متن کاملFuzzy Apriori Rule Extraction Using Multi-Objective Particle Swarm Optimization: The Case of Credit Scoring
There are many methods introduced to solve the credit scoring problem such as support vector machines, neural networks and rule based classifiers. Rule bases are more favourite in credit decision making because of their ability to explicitly distinguish between good and bad applicants.In this paper multi-objective particle swarm is applied to optimize fuzzy apriori rule base in credit scoring. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013